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Abstract: The vulnerability of plant water transport tissues to a loss of function by cavitation during 5 
water stress is a key indicator of the survival capabilities of plant species during drought. Quantifying 6 
this important metric has been greatly advanced by non-invasive techniques that allow embolisms to 7 
be directly viewed in the vascular system. Here we present a new method for evaluating the spatial 8 
and temporal propagation of embolising bubbles in the stem xylem during imposed water stress. We 9 
demonstrate how the “optical method”, previously used in leaves, can be adapted to measure the 10 
xylem vulnerability of stems. Validation of the technique is carried out by measuring the xylem 11 
vulnerability of 13 conifers and two short vesselled angiosperms and comparing results with 12 
measurements made using the “cavitron” centrifuge method. Very close agreement between the 13 
two methods confirms the reliability of the new optical technique, and opens the way to simple, 14 
efficient and reliable assessment of stem vulnerability using standard flatbed scanners, cameras or 15 
microscopes.  16 

 17 

INTRODUCTION 18 

In modern tracheophytes xylem cavitation constitutes a fundamental limitation to the functionality 19 
of water transport systems. As a consequence, the ability of species to resist or avoid cavitation 20 
forms a primary axis of adaptation and ecological variation among land plants (Xu et al., 2016). 21 
However, despite the tremendous ecological and physiological insights that await a detailed 22 
understanding of the limits and spread of xylem cavitation in plant species, rapid progress has been 23 
limited by technical difficulties. These difficulties are largely associated with replicating, under 24 
experimental conditions, the metastable hydraulic environment that characterizes water flowing in 25 
the xylem when exposed to the large tensions that exist during rapid transpiration or soil water 26 
deficit (Cochard et al., 2013).  27 

Most traditional methods of quantifying the degree of xylem embolism require excision of plant 28 
parts (stems, roots or leaves), causing air or exogenous water to be rapidly sucked into the 29 
vasculature, thereby substantially perturbing the vascular system prior to measurement (Ennajeh et 30 
al., 2011; Rockwell et al., 2014). A substantial advance in recent years has been the use of imaging 31 
technology that allows water to be viewed inside intact plants, revealing the location and formation 32 
of embolisms inside stems (Brodersen et al., 2013), roots (Cuneo et al., 2016), leaves (Bouche et al., 33 
2015; Brodribb et al., 2016; Scoffoni et al., 2017), and flowers (Zhang and Brodribb, 2017). These 34 
studies have substantially changed our view of xylem cavitation and repair, indicating that cavitation 35 
can propagate quickly between plant organs (Skelton et al., 2017), and that air blockages (embolisms) 36 
are not rapidly repaired in trees after re-watering (Choat et al., 2015; Charrier et al., 2016). 37 
Cavitation is now widely viewed as a long-term damage to the water transport system of trees, that 38 
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occurs under significant water stress, and that is repaired by regrowth of new xylem tissue (Brodribb 39 
et al., 2010; Cochard and Delzon, 2013).  40 

Imaging with x-ray provides unrivalled spatial information about where cavitation occurs in stems 41 
and can be used to determine the vulnerability of xylem to cavitation in plant species (Choat et al., 42 
2015; Nolf et al., 2017). However the damaging nature of the x-ray beam means that high frequency 43 
imaging during the hours and days required to dehydrate plants to water stresses sufficient to cause 44 
cavitation is not possible. Magnetic resonance imaging on the other hand can provide spatial and 45 
temporal information about cavitation, but low image resolution (pixel sizes larger than the vessels 46 
of most species) means that MRI can only be used to resolve embolisms in species with very large 47 
vessels. Both techniques require large and expensive hardware and are not currently usable in the 48 
field, thus having limited application for measuring large sample sizes. An alternative to these 49 
hardware-intensive methods was recently developed using an optical technique measures changes 50 
in visual light transmission caused by cavitation in leaf veins (Brodribb et al., 2016). This technique 51 
was developed following observations of cavitation bubbles in excised conifer tracheids 52 
(Ponomarenko et al., 2014), and provides detailed information about the spatial and temporal 53 
evolution of cavitation in the venation network of leaves exposed to water stress. The calculated 54 
“vulnerability” of leaf xylem to cavitation (expressed as a P50, or potential required to deactivate 50% 55 
of xylem function) using this Optical Vulnerability (OV) method agrees closely with hydraulically 56 
measured P50 in leaves (Brodribb et al., 2016), indicating the utility of the method for quantifying 57 
hydraulic failure . Importantly, the OV method requires only a flatbed scanner or camera to collect 58 
vulnerability information, thus providing a cost effective and portable means of assessing leaf xylem 59 
vulnerability.  60 

Although the OV method has a demonstrated capacity to reveal leaf vulnerability to water stress, 61 
one of the primary applications of xylem cavitation physiology is in the prediction of tree mortality 62 
(Anderegg et al., 2015) and species distribution (Larter et al.), and in these applications stem 63 
vulnerability may provide a more definitive mortality threshold than leaves. Studies of potted plants 64 
have shown that failure of the stem xylem corresponds closely to the point of tree mortality during 65 
acute drought stress (Brodribb and Cochard, 2009; Urli et al., 2013), as might be expected 66 
considering the fact that embolism of the stem effectively isolates the leaves from soil water. A 67 
vulnerability gradient from stems to leaves is evident in some species (Tyree et al., 1993) (but 68 
probably not in herbs (Skelton et al., 2017)), and is hypothesized to be a way that woody plants 69 
protect their more energy expensive stem investment by sacrificing leaves during extreme drought 70 
(Zimmermann, 1983; Hochberg et al., 2017). Given the importance of understanding stem 71 
vulnerability in woody plants we sought here to extend the highly efficient OV method in leaves, to 72 
stems. We postulated that the same principle used to identify cavitation in leaves, recording changes 73 
in light transmission caused by a transition from liquid to air filled xylem conduits during cavitation, 74 
could be used in stems. Indeed it has been known for a long time that air bubbles can be visualized 75 
in stems by light microscopy (Vesque, 1883), and the same principle was used 80 years ago as a way 76 
of identifying the presence of water or air in branches by the evolution of light coloured streaks in 77 
the wood after it had been pricked with a sharp scalpel (Haines, 1935). Here we utilize the principal 78 
that a transition from a water-containing, to an air-filled conduit during cavitation will cause a 79 
distinct colour change in visible conduits from translucent (typically dark) to reflective (white) tissue. 80 
Thus we quantify spatially discrete changes in the refractive index of the stem. Continuous 81 
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observation of drying stems should thus allow the timing and pattern of cavitation to be recorded 82 
and quantified in relation to concurrent measurements of stem water potential.  83 

In order to cross-validate the new stem optical method here we use a traditional hydraulic 84 
centrifuge method as a standard reference for comparison. The centrifuge method has long been 85 
considered an accurate method for assessing xylem vulnerability, except in cases where maximum 86 
vessel lengths are similar to the diameter of the centrifuge rotor (Cochard et al., 2013). For this 87 
reason we focussed on a diverse group of conifers which lack long xylem conduits, and two short 88 
vessel angiosperms were also included to maximize the breadth of the species sample.  89 

 90 

RESULTS 91 

Cavitation was easily resolved visually, and could be readily quantified by applying image difference 92 
to distinguish fast changes in light reflection due to xylem cavitation from slow movements 93 
associated with branch deformation during drying. The onset of cavitation was recorded on average 94 
1308 minutes after branch excision, but ranged from 420 to 2230 minutes. In all species, the 95 
cumulative total of cavitations recorded followed an approximately sigmoidal function, although this 96 
was never a completely smooth function, typically being punctuated by blocks of major cavitation 97 
(Fig.1, Fig. 2). These blocks of cavitation often involved hundreds of tracheids in the conifers, and 98 
typically became larger as water potential approached P50, before diminishing in size towards the end 99 
of the drying process. Typically, many cavitation events were recorded in the same part of the stem 100 
due to the multiple layers of overlaying xylem that were represented in the 2D image differences. 101 
The total cavitated area was typically 150-200% of the 2D area of the exposed stem (due to multiple 102 
layers of conduits). 103 

Cavitation in the two species of angiosperms also appeared to involve groups of conduits, 104 
particularly during the period of maximum intensity of cavitation around P50 (Fig. 2). But smaller 105 
events, presumably representing individual conduits, were often observed as early events, or as a 106 
tail towards the end of the cavitation process (Fig. 2).  107 

Large differences in P50 were recorded between species using the optical method, with means 108 
ranging from -1.2MPa in Retrophyllum comptonii to – 9.1MPa in Disemla archeri. Within species 109 
variation was also significant in many species, reaching a maximum in Diselma archeri where P50 110 
ranged between -6.7 and -11.2 MPa between individuals. On average the coefficient of variation in 111 
P50 among replicate branches was 16.2% using the optical method and 9.2% using the cavitron. 112 
Mean slopes of the vulnerability curves for each species (between 12% and 88% loss of function) 113 
were correlated between the two methods, but the optical method produced steeper slopes on 114 
average. 115 

Among the conifer species there was strong agreement between P50 determined with the optical 116 
technique and centrifuge techniques. A regression slope of 0.997 (r2=0.93) was found between 117 
optical and centrifuge P50 in the 12 conifer species, and the ranking of P50 was very similar using both 118 
methods.  119 
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One of the two angiosperms sampled showed a significant difference between the optical and 120 
centrifuge P50. Although both techniques found Rosmarinus samples to be highly cavitation resistant, 121 
P50 on the centrifuge (-12MPa) was 32% more negative than the optical method (-8.1MPa).  122 

 123 

DISCUSSION 124 

A new optical method for visualizing the process of xylem cavitation in plants is shown here to 125 
quantify the vulnerability of stem xylem to cavitation-induced reductions in hydraulic function of the 126 
stem xylem. The process of cavitation damage to the stem vascular system during water stress could 127 
be tracked in time and space on the stems of a diversity of species including woody conifers and 128 
angiosperms. This novel technique represents a very easy and cheap new method for assessing stem 129 
vulnerability in woody species using excised branches. In principle, the method can also be used on 130 
attached branches, although this was not tested here. 131 

The optical technique allows direct visualization of the process of cavitation in stems under realistic 132 
conditions of plant desiccation (as opposed to centrifugation or stem pressurization). Apart from its 133 
simplicity, the advantage of this technique is that it provides a complete view of the spatial and 134 
temporal progression of cavitation in stems during increasing water stress. This new perspective of 135 
stem cavitation means that continuous monitoring of stem cavitation is possible as bubbles 136 
propagate axially in the stem during the development of increasing water deficit. Although cross-137 
validation of the technique was performed using woody stems, the technique also works well in 138 
herbaceous species, where more translucent stems often do not require phloem removal. 139 

The precisely resolved temporal dynamics of stem cavitation in both conifers and angiosperms 140 
studied here all yielded vulnerability curves that were highly sigmoidal in shape, characterized by an 141 
initial, extended period of stem desiccation before any stem cavitation events were recorded. This 142 
sigmoidal form of xylem vulnerability measured by the OV technique closely matches the form of 143 
cavitron (Lamy et al., 2011) and x-ray CT (Choat et al., 2015) vulnerability curves. The majority of 144 
data collected using traditional bench drying methods of measuring xylem vulnerability also produce 145 
sigmoidal vulnerability curves, but more linear curves are often reported in species with highly 146 
stress-resistant xylem (Markesteijn et al., 2011; Vinya et al., 2013). One important benefit of the OV 147 
and CT methods of assessing vulnerability is that they report the responses of functioning xylem 148 
without reference to a “flushed” condition. The flushing procedure is required by other hydraulic 149 
techniques, whereby samples are subjected to high water pressure to fill all airspaces in the sample 150 
and provide a theoretical maximum conductance. Flushing has the potential to activate (refil) xylem 151 
that was non-functional xylem in the intact plant, as well as introducing bubble nuclei, both of which 152 
can produce erroneous vulnerability curves (Rockwell et al., 2014). 153 

Among the range of alternative methods for measuring xylem vulnerability, the cavitron was 154 
selected here as a standard for comparison because it is considered to be highly reliable when used 155 
to measure species with short conduits such as conifers (Cochard et al., 2013). For this reason most 156 
of our sample set was taken from the conifer clade, using the same individuals for both optical 157 
(sampled in 2016) and cavitron (sampled in 2012) techniques. The accuracy of centrifuges for 158 
measuring angiosperm xylem vulnerability is the subject of considerable debate due to probable 159 
artefacts associated with long vessels (Torres‐Ruiz et al., 2014; Hacke et al., 2015). For this reason 160 
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we only measured two species of angiosperms, selected to cover a range of sensitivity to water 161 
stress, but both of which had maximum xylem vessel lengths that were approximately half that of 162 
the rotor diameter. Despite the huge difference in vulnerability between the two angiosperms 163 
measured here, both were found to produce a sigmoidal form in their vulnerability curves using both 164 
optical and cavitron methods. Our predawn sampling of well watered trees ensured that sampled 165 
branches started drying from water potentials close to zero, thus ensuring a minimum of native 166 
embolism in the measured samples. 167 

The optical method assesses the loss in xylem function in terms of a cumulative area of stem 168 
cavitated in each frame of image sequences. This area-based calculation does not account for the 169 
profound influence of xylem conduit radius, in the order of r4, that should determine the flow 170 
penalty incurred by cavitation of any particular conduit in the stem (Sperry et al., 2006). Despite this 171 
apparent limitation there was very strong agreement in P50 between the optical method (reporting 172 
area of cavitated conduits) and the centrifuge method (quantifying losses in hydraulic conductance). 173 
The explanation for the strong agreement between techniques despite different metrics of 174 
cavitation is clearly evident from the spatiotemporal distribution of cavitation in stems observed 175 
here. Most significant is the evolution of cavitation in large blocks of connected conduits as opposed 176 
to discrete conduits, particularly as stems approached the P50 water potential. These large 177 
interconnected cavitation events are also seen in x-ray images of stems (Choat et al., 2015b), and 178 
produce a steep slope in the vulnerability curve around P50. Assuming that cavitation in stems on the 179 
centrifuge also proceeds in this fashion, then it would be expected that P50s produced by the two 180 
techniques would agree. The optical technique emphasizes the importance of connections between 181 
conduits more than the size of individual vessels, and due to the nature of cavitation propagation, 182 
this is likely to accurately capture the dynamics of flow restriction. Although the slopes of 183 
vulnerability curves produced by the cavitron tended to be shallower than those using the optical 184 
method, this is may be explained by the smaller diameter branches used on the optical versus 185 
cavitron technique. Small (3-6mm) diameter branches were used for the optical measurements to 186 
ensure cavitations could be visualized from all depths in the stem. Larger diameter stem samples 187 
used in the cavitron measurements are likely to incorporate more than one year of growth in the 188 
sampled branch, particularly considering the slow growth of many of the conifer species used here 189 
for comparison . Thus the cavitron curves reflect the integrated vulnerability of a much larger sample 190 
of tracheids than the < one year old stems measured by the optical method, likely leading to a 191 
shallower slope (Torres Ruiz et al., 2016).  192 

A significant discrepancy between P50 in optical and centrifuge methods was only observed in stems 193 
of the angiosperm Rosmarinus. Although both methods recorded extremely high cavitation 194 
resistance in this species, the cavitron produced a more negative P50. Further examination of this 195 
species and other highly resistant angiosperms will be needed to determine whether this 196 
disagreement is due to artefacts or some systematic bias of one of the two methods.  One possible 197 
contributing factor is the long travel time from Hobart to France prior to measurement of this 198 
individual. Samples of the same species measured locally with the cavitron yielded values much 199 
closer to the OV value (Herve Cochard, pers. comm). This very resistant end of the vulnerability 200 
spectrum is of particular interest as it appears as a critical adaptation in both conifer (Larter et al.; 201 
Brodribb et al., 2014) and angiosperm (Blackman et al., 2012) tree species inhabiting semi-arid 202 
woodland. 203 

 www.plantphysiol.orgon August 16, 2017 - Published by Downloaded from 
Copyright © 2017 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 

 6

The success of the optical method in providing a time resolved map of cavitation in water stressed 204 
stems, while yielding an accurate measure of vulnerability in terms of P50, opens the door to new 205 
applications. The simplicity and low cost of the technique makes it highly appealing for ecological 206 
and genetic research where large sample sizes are required. In addition the techinique provides a 207 
means of viewing cavitation in tisues that have been difficult to measure. Flowers have recently 208 
been successfully measured using the optical method to show embolism relative to leaves in herbs 209 
and woody species (Zhang and Brodribb, 2017), while roots present an obvious future target. The 210 
optical method is ideally suited to explore how cavitation moves within and between plant tissues as 211 
water stress intensifies, and has the potential to provide an integrated view of cavitation in major 212 
plant organs as cavitation propagates within an individual.  213 

 214 

MATERIALS AND METHODS 215 

Plant Material 216 

Thirteen species of conifers from four conifer families (Table I) were sampled from a potted conifer 217 
collection growing in glasshouses at the University of Tasmania. All plants were >10 years old and 218 
were growing in 20L pots under well watered conditions in partially open glasshouses such that light 219 
and temperature were close to ambient conditions in Hobart (Australia). Samples for centrifuge 220 
analysis were collected and measured in 2012 while samples for optical analysis were made in 2016 221 
on the same individuals or clones. All species were represented by three replicates collected as 222 
cuttings from different individuals in the wild, or wild collected seeds. In addition we collected two 223 
angiosperms with contrasting water stress tolerance to represent opposite ends of the angiosperm 224 
vulnerability spectrum, but which had relatively short vessels such that they could be measured 225 
using the centrifuge technique. These two species (Rosmarinus officinalis and Betula pendula) were 226 
both collected at the end of a wet spring (2016) from single garden plants in Hobart. 227 

Cavitron stem vulnerability 228 

We carried out measurements on one or two branches from three to 16 trees per species. 229 
Transpiration losses were prevented by removing the needles or leaves immediately after sampling 230 
and wrapping the branches in moist paper to keep them humid and cool (5°C) until the 231 
measurement of embolism resistance (within three weeks of sampling). All samples were sent via an 232 
international express shipping company to France within three days. Vulnerability to drought-233 
induced embolism was then determined at the Caviplace (University of Bordeaux, Talence, France; 234 
http://sylvain-delzon.com/caviplace) with the Cavitron technique (Cochard, 2002; Cochard et al., 235 
2005). The bark was removed from conifer branches before sampling, to prevent resin 236 
contamination, and all branches were recut with a razor blade, under water, to a standard length of 237 
0.27 m. The percentage loss of conductance (PLC) was determined at different speeds (i.e. different 238 
xylem pressures) to obtain a vulnerability curve for each sample. These vulnerability curves show the 239 
percentage loss of xylem conductance as a function of xylem pressure (see (Delzon et al., 2010) for 240 
details). For each branch, the relationship between PLC and xylem water pressure was fitted with 241 
the following sigmoidal equation (Pammenter and Van der Willigen, 1998): 242 
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where P50 (MPa) is the xylem pressure inducing a 50% loss of conductivity and S (% MPa-1) is the 243 
slope of the vulnerability curve at the inflection point. Mean values of embolism vulnerability 244 
parameters (P50 and S) correspond to the average values of three to 16 samples per species. 245 
Additionally, we used our VCs to calculate P12 and P88, which are respectively the 12% and 88% loss 246 
of hydraulic conductivity. P12 and P88 are physiologically significant indexes because they are 247 
thought to respectively reflect the initial air-entry tension producing embolisms and the irreversible 248 
death-inducing xylem tension (Urli et al., 2013). 249 

Optical stem vulnerability 250 

The same individuals or clones of trees collected in 2012 for cavitron determination of P50 were 251 
revisited and sampled using the optical vulnerability method. Branches in the order of 1m long were 252 
cut from trees early in the morning and transferred in plastic bags to the laboratory about 50m away. 253 
Branches were generally allowed to equilibrate in moist plastic bags in the dark for a period of 60 254 
minutes to ensure stomata were closed before preparing the stem for imaging. The optical method 255 
cannot quantify existing embolism in the wood and is only able to measure new cavitations. For this 256 
reason great care was taken to ensure that samples were not exposed to any form of water stress or 257 
freezing in the months before measurement. 258 

A stem psychrometer (ICT Australia) was fitted as close as possible to the region of stem being 259 
scanned for embolism formation. In fitting the psychrometer a small square of bark was removed 260 
avoiding damage to the wood. The psychrometer was partially insulated with polystyrene and set to 261 
log leaf water potential every 10 minutes. The cooling time for the psychrometer was increased from 262 
5s to 30s as stems dried, ensuring a stable reading of the wet-bulb temperature. Reference leaf 263 
water potentials were taken during the drying period using a Scholander pressure chamber, to 264 
ensure that leaf and stem water potentials were equilibrated, as would be expected due to stomatal 265 
closure prior to the commencement of cavitation (Brodribb and Holbrook, 2003). However, after 266 
stem cavitation had begun Scholander and psychrometer values often tended to diverge as would be 267 
expected due to hydraulic disconnection between leaves and stems. 268 

A stem approximately 3-6mm in diameter and approximately 80-120 cm in length for conifers or 1-269 
2m in length for the angiosperms, was selected for scanning. Branches that were actively elongating 270 
or expanding leaves were avoided to be sure that the xylem was mature (non-living). The depth of 271 
xylem that could be reliably visualized for cavitation was approximately 1mm, so a selection of stems 272 
were sectioned before-hand to determine the approximate branch thickness that would yield 1mm 273 
of xylem above the pith. A leafless region of the stem, approximately 15mm in length was prepared 274 
so that xylem on one side of the pith could be imaged. A region of bark approximately 15-20mm in 275 
length was carefully removed from one side of the stem to expose the underlying wood without 276 
causing damage the xylem. The easiest way of doing this was to run two parallel axial cuts along the 277 
bark either side of the desired window, avoiding damage to the underlying xylem, and to use a 278 
needle or fingernails to peel the bark gently back from the cuts. Once a window was created, it was 279 
firmly secured either onto a flatbed scanner (Perfection 800, Epson) or a microscope stage (Leica 280 
M205) using padded clamps to ensure no movement of the sample during drying. Once secured, the 281 
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scanner or camera was set to capture images at a rate of one per minute, and the sample left to dry 282 
slowly until cavitations were no longer recorded (typically in the order of 48-120 hours). During 283 
drying, the target region of the stem was mostly darkened except for the light of the microscope (a 284 
ring illumination using LED lighting) or scanner. The rest of the stem was exposed to laboratory 285 
lighting, and ambient conditions of 22°C and 55% RH. In the case of the scanner, images were 286 
collected in normal reflective mode rather than the transmission mode used for leaves. Samples 287 
were allowed to dry until no further cavitations could be seen in the xylem for a period of 12 hours. 288 
In some samples, a thin layer of hydrogel (Tensive Gel, Parker USA) was applied to the exposed 289 
xylem surface to improve light transmission and reduce evaporation from the surface. This had no 290 
appreciable effect on the value of P50 when compared between samples (unpublished data) but care 291 
was necessary to avoid reflections of movements as the gel shrinks during the drying process. 292 

Once completed, image sequences were analysed to identify cavitation, which was easily seen as 293 
changes in the reflection of the exposed xylem. Analysis by image difference using ImageJ (NIH), was 294 
carried out by are subtracting successive images to reveal fast changes in contrast produced by 295 
cavitation. These rapid changes were easily identified in image subtractions, and could be filtered 296 
from slow movements caused by drying. Thresholding of image differences allowed automated 297 
counting of cavitation events using the “analyze stack” function in ImageJ. Full details including an 298 
overview of the technique, image processing as well as scripts to guide image capture and analysis 299 
are available at http://www.opensourceov.org. 300 

A time-resolved count of cavitations in each stem, quantified as a number of pixels per event during 301 
stem drying was compiled and this was converted to a % of total pixels cavitated. The psychrometer 302 
output was then used to determine a fitted function that described the change in stem water 303 
potential over time. Typically this was a linear function once stomata were closed, but occasionally 304 
polynomial functions were fitted to account for variation in the slope dψstem/dt. Combining the 305 
cavitation count with the function describing dψstem/dt allowed the cumulative number of 306 
cavitations to be expressed as a function of ψstem. The P50 for each sample stem was taken directly 307 
from this plot. One value of P50 was measured for each of three stems, allowing a mean and SD to be 308 
presented for each species. 309 
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 315 

 316 

 Table I- Species list 317 

Species  Family Class 
Agathis robusta (C.Moore ex F.Muell.) F.M.Bailey Araucariaceae Conifer 
Araucaria bidwillii Hook. Araucariaceae Conifer 
Araucaria cunninghamii Mudie. Araucariaceae Conifer 
Wollemia nobilis W.G.Jones, K.D.Hill & J.M.Allen Araucariaceae Conifer 
Callitris rhomboidea R.Br. ex Rich. & A.Rich. Cupressaceae Conifer 
Diselma archeri Hook.f. Cupressaceae Conifer 
Acmopyle pancheri (Brongn. & Gris) Pilg. Podocarpaceae Conifer 
Afrocarpus falcatus (Thunb.) C.N.Page Podocarpaceae Conifer 
Dacrycarpus imbricatus (Blume) de Laub. Podocarpaceae Conifer 
Lagarostrobos franklinii (Hook.f.) Quinn Podocarpaceae Conifer 
Phyllocladus aspleniifolius (Labill.) Hook.f. Podocarpaceae Conifer 
Prumnopitys ladei (F.M.Bailey) de Laub. Podocarpaceae Conifer  
Retrophyllum comptonii (J.Buchholz) C.N.Page Podocarpaceae Conifer 
Retrophyllum rospigliosii (Pilg.) C.N.Page Podocarpaceae Conifer 
Betula pendula Roth Betulaceae Angiosperm 
Rosmarinus officinalis L. Lamiaceae Angiosperm 
 318 

.  319 

  320 

 www.plantphysiol.orgon August 16, 2017 - Published by Downloaded from 
Copyright © 2017 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org


 

 10

 321 

FIGURE CAPTIONS 322 

Figure 1. A- Cumulative area of cavitated xylem in a sample stem of Callitris rhomboidea is shown to 323 
increase rapidly approximately 1 day after a hydrated branch was excised (time zero) and allowed to 324 
dry. After a rapid rise in cavitation the rate of new xylem cavitated (quantified as number of pixels) 325 
falls back to zero approximately 3 days after excision. The insert graph shows that the size of newly 326 
cavitated regions visualized in the stem reaches a maximum during the steepest part of the curve 327 
(insert). During this period, very large blocks of tracheids were cavitating in the 2 minute interval 328 
between scans. B- Cumulative area of cavitated xylem expressed as a function of stem water 329 
potential showing a classic sigmoidal vulnerability curve. C- A mosaic of colour maps showing the 330 
spatial progression of cavitation through time in this 20mm long branched sample, the same stem 331 
sample as B and C. Sequential blocks of 280 images have been stacked together (frame numbers 332 
shown at the lower portion of each tile), with cavitated pixels coloured according to the water 333 
potential at which cavitation occurred. In this sample the smaller branches proved to be more 334 
resistant to cavitation than the main branch. 335 

Figure 2. Similar plots as in Fig.1 showing the progression of cavitation in a stem of the angiosperm 336 
Rosmarinus officinalis. Despite the extreme resistance to cavitation in this stem the vulnerability 337 
curve shows a very steep transition from 12 to 88% cavitation. The reason for this steep transition 338 
can be clearly seen as due to a number of large and long cavitations between frames 279 and 333.   339 

Figure 3. A comparison of vulnerability curve shape produced by the cavitron (black circles) and the 340 
optical method using branches from the same three individuals of the conifer Lagarostrobus 341 
franklinii. Although the mean P50 is very similar in both species, the slope of the curves between 12% 342 
and 88% were steeper using the optical method.  343 

Figure 4. Mean P50 (±sd) for stems of the same individuals measured with the optical and cavitron 344 
methods. Very close agreement was found in the conifer sample between methods (regression slope 345 
0.98; r2= 0.93). Among the two angiosperms sampled, good agreement was found in one species, 346 
while the cavitron method produced a more negative P50 in the second. Slopes produced by the two 347 
techniques (insert graph) were correlated (r2=0.35; p<0.05), but the optical technique produced a 348 
steeper slope in 14/16 species (1:1 shown as dotted line in each plot). 349 

  350 
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